	Y12	Y13
Half Term 1	Module 1 - Cells and Reproduction \rightarrow Prokaryotic and eukaryotic cells \rightarrow Microscopy \rightarrow Viruses \rightarrow Mitosis \rightarrow CPAC 1 - Microscopy Module 2 - Biochemistry \rightarrow Carbohydrates - Monosaccharides, Disaccharides, Polysaccharides starch, cellulose and glycogen \rightarrow Proteins - Amino acids and dipeptides, Primary, secondary and tertiary protein structure. \rightarrow Lipids - Glycerol, Fatty acids, phospholipids and the fluid mosaic model. \rightarrow Enzymes - The lock and key \& induced fit model, Rates of reaction, competitive and non competitive inhibition. \rightarrow CPAC 2 - Rate of Enzyme controlled reaction. \rightarrow The genetic code-DNA, RNA, Transcription and translation.	Module 5 - Energy for Biological processes Photosynthesis \rightarrow Absorption and action spectra \rightarrow CPAC 10 - investigating how different wavelengths of light affect the rate of photosynthesis. \rightarrow CPAC 11 - Chromatography - investigating the pigments photosynthesis. \rightarrow The structure and function of a chloroplast. \rightarrow Light dependent stage - production of ATP and NADPH \rightarrow Light independent stage - Carbon fixation and reduction of GP to GALP with production of biological molecules. Module 7 - Modern Genetics. \rightarrow The genome and gene sequencing \rightarrow Using PCR. \rightarrow Factors affecting gene expression \rightarrow The role of transcription factors. \rightarrow Splicing og mRNA \rightarrow Epigenetic modification - non coding RNA, histone modification and methylation. \rightarrow Stem cells and Differentiation \rightarrow Totipotent, pluripotent and multipotent stem cells. \rightarrow Using epigenetic modification of somatic cells forming Induced pluripotent Stem Cells. \rightarrow Gene technology -use of restriction endonucleases and ligase use to form recombinant DNA and genetically modified organisms. \rightarrow Use of marker genes and replica plating to identify recombinant cells. \rightarrow Use of knockout mice \rightarrow Debates about the use of genetically modified organisms

Half Term 3	Module 3 - Evolution \& Biodiversity \rightarrow Classification - Linnaean system of Binomial nomenclature. \rightarrow Evolution by natural selection. \rightarrow Phylogenetics and fossils as evidence of evolution by natural selection. \rightarrow Biodiversity and the index of biodiversity - species richness and evenness. \rightarrow Module 3 assessment and DIRT Module 4-Transport in plants and animals \rightarrow Surface area to volume ratio. \rightarrow Fick's law and mass transport. \rightarrow Fluid mosaic model of cell membranes \rightarrow CPAC 5 - Investigation membrane permeability. \rightarrow Diffusion \rightarrow Facilitated diffusion \rightarrow Active transport \rightarrow Water potential \& Osmosis \rightarrow CPAC 6 - Determine the water potential of plant tissue.	Module 6 - Microbiology and Pathogens \rightarrow Aseptic technique and Culturing techniques. \rightarrow Understanding the phases of bacterial growth \rightarrow Core practical 12 - Investigating the rate of growth of bacteria in liquid culture \rightarrow Core practical 13 - isolating individual species of bacteria from a mixture culture using streak plating. \rightarrow Bacteria as pathogens \rightarrow Endo and exo toxin production \rightarrow Action of antibiotics - bacteriostatic and bactericidal antibiotics. \rightarrow Natural selection and the spread of antibiotic resistance. \rightarrow Other pathogenic agents - Stem rust fungus, influenza and the malaria parasite \rightarrow Controlling endemic disease \rightarrow Response to infection - macrophages, neutrophils, T and B lymphocytes \rightarrow The humoural response \rightarrow The cell mediated response \rightarrow The role of memory cells in the secondary immune response \rightarrow Natural and artificial immunity. \rightarrow Active and passive immunity \rightarrow Vaccination and Herd immunity Module 9 - Control systems \rightarrow Understanding that homeostasis is a dynamic state of equilibrium. \rightarrow Controlling pH , temperature and water potential \rightarrow Positive and negative feedback \rightarrow Endocrine system - comparing peptide and steroid hormones. Chemical control in plants \rightarrow Auxins, cytokinins and gibberellins \rightarrow CPAC 14 Gibberellin starch assay. \rightarrow Auxin as a stimulant for apical dominance and root growth \rightarrow Antagonistic actions of cytokinins and Auxins \rightarrow Phytochrome and photomorphogenesis

Half Term 4	Module 4 \rightarrow Gas Exchange in insects, fish, plants and mammals. \rightarrow CPAC 7 Dissection of the gas exchange organs of a locust. \rightarrow Circulation - structure of the heart and blood vessels. \rightarrow Myogenic muscle and the electrical conductivity of the heart. \rightarrow Cardiac cycle \rightarrow Blood-Erythrocytes, leukocytes, neutrophils and eosinophils, B Lymphocytes and T lymphocytes. \rightarrow Blood clotting cascade \rightarrow Atheroma	Module 9 \rightarrow Mammalian nervous system. \rightarrow CNS, spinal cord and peripheral nervous system. \rightarrow The brain to include medulla, cerebellum, cerebrum and hypothalamus. \rightarrow Peripheral nervous system - somatic and autonomic nervous systems \rightarrow Autonomic nervous system - antagonistic nature of the sympathetic and parasympathetic nervous systems.
Half Term 5	Module 4 \rightarrow Exchange of materials between cells \rightarrow Tissue fluid and oncotic pressure \rightarrow Lymphatic system. \rightarrow Oxygen Dissociation curves to include foetal haemoglobin and myoglobin. \rightarrow Transport in plants \rightarrow Structure and function of xylem and phloem. \rightarrow Symplast and apoplast pathways \rightarrow Root pressure	Module 10 - Ecology \rightarrow Ecosystems \rightarrow Techniques for sampling and investigating ecosystems \rightarrow Energy transfer through ecosystems \rightarrow Changes in Ecosystems \rightarrow Human impacts on ecosystems

