11 into 12 Applied Science Assignment.

Quantitative Chemistry

Name:

Moles

Number of Moles =
$$\frac{mass in grams}{Mass of 1 mole}$$

 $n = \frac{m}{M}$

1. How many moles are in 14 grams of lithium?

			1
<u> </u>			

2. How many grams are in 2.5 moles of sulfur?

3. How many moles are in 120 grams of argon?

4. How many grams are in 84 moles of magnesium?

6. How many grams are in 12 moles of chromium

7. How many moles are in 5 grams of calcium?

Compounds (Find the M_r first)

8. How many moles are in 234 grams of aluminum hydroxide, $AI(OH)_3$

9. How many moles are in 68 grams of copper (II) hydroxide, $Cu(OH)_2$

If you write a formula for a substance in a calculation it is often convenient to take that formula as meaning 1 mole of that substance. This enables you to attach a mass to it and therefore work things out from it.

1. What mass of CaO (Mr=56) could be obtained by heating 25g of limestone CaCO₃ (CaCO₃ Mr=100)

 $CaCO_3 \rightarrow CaO + CO_2$

2. In a blast furnace haematite Fe_2O_3 (Mr=160) is converted to iron.

 $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2$

What mass of Iron (Ar=56)can be obtained from 16g of iron oxide?

3. 2.67g of aluminium chloride was dissolved in water and silver nitrate added to give a precipitate of silver chloride. What mass of silver chloride would be formed?

 $AICI_3 + 3AgNO_3 \rightarrow AI(NO_3)_3 + 3AgCI$

(AgCl=143.5, AlCl₃=133.5)

4. $C_7H_6O_3 + C_4H_6O_3 \rightarrow C_9H_8O_4 + CH_3COOH$ Salicylic aspirin acid

Calculate the maximum mass of aspirin that could be made from 2.00 g of salicylic acid. The relative formula mass (*M*r) of salicylic acid, $C_7H_6O_3$, is 138 The relative formula mass (*M*r) of aspirin, $C_9H_8O_4$, is 180

5. What mass of sodium chloride will be formed when 4g of sodium hydroxide reacts with excess hydrochloric acid?

Mr (NaOH) = 40, Mr (NaCl) = 58

 $\rm NaOH + HCI \rightarrow NaCI + H_2O$

6. What mass of silver chloride will be formed when 5.2g of barium chloride reacts with silver nitrate both in solution?

 $BaCl_2 + 2AgNO_3 \rightarrow 2AgCl + Ba(NO_3)_2$

(BaCl₂=172.5 AgCl = 143.5)

Percentage yield

Even though no atoms are gained or lost in a chemical reaction, it is not always possible to obtain the calculated amount of a product because:

- 1. the reaction may not go to completion because it is reversible
- 2. some of the product may be lost when it is separated from the reaction mixture
- 3. some of the reactants may react in ways different to the expected reaction. The amount of a product obtained is known as the yield. When compared with the maximum theoretical amount as a percentage, it is called the percentage yield.

Students should be able to:

- 1. calculate the percentage yield of a product from the actual yield of a reaction
- 2. (HT only) calculate the theoretical mass of a product from a given mass of reactant and the balanced equation for the reaction.

Key questions

1. In a reaction a student expected to produce 56g of calcium oxide, they only produced 42g. What is the percentage yield?

2. An industrial reaction was expected to give a total of 1.53 tonnes, in the end it was found that 0.95 tonnes was produced, find the percentage yield.

These questions combine reacting masses and percentage yield.

1. In the following reaction $Fe_2O_3 + 3CO \rightarrow 2Fe + 3CO_2 - 0.95Kg$ of iron ore yields 0.46kg of iron, calculate the percentage yield.

2. 1000 tonnes of Cyclohexane (Mr=98) reacts to produce 834 tonnes of methylene cyclohexane (Mr=96) what is the percentage yield. Assume that one mole of Cyclohexane makes one mole of methylene cyclohexane.

3. Ethanoic acid (CH₃COOH) is reacted with ethanol (C₂H₅OH) to produce ethyl ethanoate (CH₃COOC₂H₅), if we start with 21g of ethanol and produce 36g of ethyl ethanoate, calculate the percentage yield. Assume that one mole of ethanol makes one mole of ethyl ethanoate.

Concentrations

Using concentrations of solutions in mol/dm³ (chemistry only) (HT only)

The concentration of a solution can be measured in mol/dm³.

The amount in moles of solute or the mass in grams of solute in a given volume of solution can be calculated from its concentration in mol/dm³.

If the volumes of two solutions that react completely are known and the concentration of one solution is known, the concentration of the other solution can be calculated.

Students should be able to explain how the concentration of a solution in mol/dm³ is related to the mass of the solute and the volume of the solution.

Key Questions

1. What is concentration a measure of?

2. What is the formula for the calculation of concentration? Rearrange it for volume and the mass of the substance

3. What is the concentration of g/dm³ of a solution of sodium chloride where 30g of sodium chloride is dissolved in 0.20dm³ of water?

4. What is the concentration in g/dm3 of iron chloride solution where 10g of iron chloride is dissolved in 25 cm³ of water?

5. What is the mass of of copper chloride in 20cm3 of an 80cm3 solution of copper chloride?

6. Calculate the concentration of a solution containing 150g of iron chloride in 3dm³ of solvent.

7. Calculate the concentration of a solution containing 48g of hydrochloric acid in 0.4dm³ of solvent.

- 8. Calculate the concentration of the following solutions in g/dm3.
- a. 60g of sodium hydroxide in 120cm3 of a solvent.

b. A solution containing 2.4g of sodium chloride in 8 cm3 of solvent.

- 9. Calculate the mass of solute in the following solutions.
- a. The mass of sodium carbonate in 2.5 dm³ of a 60 g/dm³ solution of sodium carbonate.

b. The mass of copper sulphate in 0.35 dm^3 of 60 g/dm³ solution of copper sulphate.

- 10. Calculate the mass of solute in the following solutions.
- a. The mass of sulfuric acid in 80 cm³ of a 200 g/dm³ solution of sulfuric acid.

b. The mass of magnesium chloride in 15 $\rm cm^3$ of a 120 g/dm^3.

Using concentrations of solutions in mol/dm³

1. What is concentration in mol/dm³ measure of?

2. What is the formula for the calculation of concentration in mol/dm³? Rearrange it for volume and the number of moles of the substance

3. What is the concentration in mol/dm³ of a solution with 2 moles of sodium chloride in 500cm³?

4. What is the concentration in mol/dm³ of a solution containing 3.7g of calcium hydroxide Ca(OH)₂ in 0.25dm³?

5. What mass of sodium hydroxide (NaOH, Mr=40) is there in 0.450dm3 of a 0.600 mol/dm³ solution?

2. What is the concentration of a 270 g/dm³ solution of magnesium sulphate in mol/dm³

1. State the formula required for coverting g/dm³ & mol/dm³

(MgSO₄ Mr=120)

Converting between mol/dm³ & g/dm³

3. What is the concentration of a 0.15 mol/dm³ solution of potassium hydroxide in g/dm³ (KOH Mr=56)

4. Calculate the number of moles in 4dm³ of 1.2 mol/dm³ HCl.

5. Calculate the number of moles in 2dm³ of 0.3 mol/dm³ NaOH

6. Calculate the number of moles of KOH in 25cm³ of 0.2 mol/dm³

7. Find the concentration of 3mol HBr in a $2dm^3$ solution

8. Calculate the concentration in 1mol of NaOH in 30cm³ of solution.

9. Calculate the volume of 2.3 mol/dm³ solution that contains 0.5mol HCl

m = n x Mr

m = mass (g), n = number of moles (mol), Mr = relative formula mass

1. What mass of NaOH is there in 2dm³ of 0.3 mol/dm³ solution?

2. What mass of H_2SO_4 is there in 3dm³ of 2 mol/dm³ solution?

Page 17

3. What is the mass of NaOH in 25cm³ of 0.3 mol/dm³ solution?

4. What is the mass of HNO₃ that would dissolve in 500cm³ of water to produce a 2 mol/dm³ solution?

Periodic Table.

				L	•					n	4	2	9	-	•
					-I										He ⁴
Key	Key		1												2
relative atomic mas atomic symbol	le atomic mas mic symbol	bol	ŝ							5 0	0 ¹²	4 Z	16 0	¹ 0	20 Ne
atomic (proton) num	(proton) num	unu	ber							5	carbon 6	nitrogen	oxygen 8	fluorine 9	10
										27	28	31	32	35.5	40
										aluminium 13	silicon 14	phosphorus 15	sulfur 16	chlorine	argon 18
48 51 52	51 52	52		55	56	59	59	63.5	65	70	73	75	79	80	84
Li C	ר כ	ັບ	-	Mn	Fe	ပိ	ï	C	Zu	Ga	Ge	As	Se	В	Ł
titanium vanadium chromiu 22 23 24	vanadium chromiu 23 24	chromiu 24	E	anganese 25	iron 26	cobalt 27	nickel 28	copper 29	zinc 30	gallium 31	germanium 32	arsenic 33	selenium 34	bromine 35	krypton 36
91 93 96 Zr Nb Mo	93 96 Nb Mo	96 Mo		[98] Tc	101 Ru	103 Rh	106 Pd	108 Ag	112 Cd	115 In	119 Sn	122 Sb	128 Te	127 I	131 Xe
zirconium niobium molybde 40 41 42	42 42	nolybde	enum tu	43	uthenium 44	thodium 45	palladium 46	silver 47	cadmium 48	indium 49	20	antimony 51	tellurium 52	iodine 53	xenon 54
178 181 184	181 184	18	+	186	190	192	195	197	201	204	207	209	[209]	[210]	[222]
Hf Ta W	Ta	3		Re	So	5	ħ	Au	Hg	F	Pb	Bi	Po	At	Rn
hafnium tantalum tungs 72 73 74	tantalum tungs 72 74	tungs 74	ten	rhenium 75	osmium 76	iridium 77	platinum 78	plog	mercury 80	thallium 81	82 82	bismuth 83	polonium 84	astatine 85	radon 86
[261] [262] [26 Rf Db Si thertortium dubnium seabor	Db Si Seabor	Si Si	10	[264] Bh	[277] Hs	[268] Mt	[271] Ds	[272] Rg	Eleme	ints with repor	atomic ted but	numbers not fully	s 112 – 1 authentio	16 have cated	been
104 105 106	105 106	100	(0)	107	108	109	110	111		•		•			